中心論題:
- 分析MEMS機(jī)油壓力傳感器的工作原理和制造工藝
- 從機(jī)油壓力傳感器封裝材料及各個工藝步驟等方面研究可靠性
解決方案:
- 選用工藝簡單、成本較低的貼片膠工藝進(jìn)行貼片
- 采用雙金絲鍵合工藝,選用高純度低缺陷的金絲,做好引線鍵合前各封裝器件的清潔工作
- 選擇高溫下穩(wěn)定的硅油和有良好鈍化層的芯片必要時(shí)對芯片以及引線進(jìn)行涂敷鈍化層處理
引言
MEMS是在集成電路生產(chǎn)技術(shù)和專用的微機(jī)電加工方法的基礎(chǔ)上蓬勃發(fā)展起來的高新技術(shù),用MEMS技術(shù)研制的壓力傳感器具有體積小、重量輕、響應(yīng)快、靈敏度高、易于批量生產(chǎn)、成本低的優(yōu)勢,它們已經(jīng)開始逐步取代基于傳統(tǒng)機(jī)電技術(shù)的壓力傳感器。目前已有多種MEMS壓力傳感器應(yīng)用到了汽車電子系統(tǒng)中,如發(fā)動機(jī)共軌壓力、機(jī)油壓力、歧管空氣進(jìn)氣壓力、汽車胎壓壓力等。其中機(jī)油壓力傳感器是用于測量汽車發(fā)動機(jī)油壓力的重要傳感器,其可靠性直接關(guān)系到汽車和人的安全性。本文選用MEMS壓力芯片,成功開發(fā)出汽車發(fā)動機(jī)機(jī)油壓力傳感器,研究了機(jī)油壓力傳感器的封裝工藝和可靠性。在傳感器的開發(fā)過程中,嚴(yán)格按汽車電子產(chǎn)品質(zhì)量要求,對傳感器的封裝及組裝過程進(jìn)行了系統(tǒng)的分析和測試,并通過工藝優(yōu)化極大地提高了傳感器的可靠性能。
工作原理和制造工藝
MEMS壓力傳感器是利用壓阻效應(yīng)原理,采用集成工藝技術(shù)經(jīng)過摻雜、擴(kuò)散,沿單晶硅片上的特定晶向,制成應(yīng)變電阻,構(gòu)成惠斯通電橋,利用硅材料的彈性力學(xué)特性,在同一硅材料上進(jìn)行各向異性微加工,制成了一個集力敏與力電轉(zhuǎn)換檢測于一體的擴(kuò)散硅傳感器。通常傳感器芯片上制作有4個多晶硅電阻,電阻制作在硅薄膜的邊沿位置,這是因?yàn)樵诒∧さ倪呇靥?,?dāng)薄膜受到作用力時(shí),應(yīng)變引起的電阻變化最大。4個壓阻R1,R2,R3,R4組成惠斯通電橋構(gòu)成壓力檢測電路,當(dāng)電橋中輸入電壓為Vin,并設(shè)膜片上的4個壓阻相等(即R1=R3=R3=R4=R),當(dāng)薄膜受力變形時(shí),兩個電阻變大,兩個電阻變小,且△R1=-△R2=△R3=-△R4=△R,則其輸出電壓Vout可表示為
式中Voffset是在零應(yīng)力和零應(yīng)變時(shí)傳感器的輸出。由式(1)可知壓阻壓力傳感器有兩種工作方式,一種是恒電壓工作方式,另一種為恒流工作方式。
MEMS壓力傳感器的一一種重要封裝形式是采用充油的不銹鋼結(jié)構(gòu),稱為充油壓敏芯體,其基本制造工藝過程包括貼片、引線、封裝殼體、充油及二次組裝等。圖1是充油壓敏芯體結(jié)構(gòu)示意圖,圖2是壓力傳感器二次封裝樣品。
可靠性實(shí)驗(yàn)
芯片貼片工藝
傳感器的貼片工藝對傳感器的性能影響很大,一般要求有足夠的貼片強(qiáng)度、盡可能小的貼片應(yīng)力和能滿足傳感器的工作溫度等。用于壓力芯片的貼片材料主要有焊料和膠,不同的貼片材料對傳感器性能影響有很大不同。由于焊料貼片時(shí)要求對芯片背面進(jìn)行金屬化處理,工藝相對較復(fù)雜,而用膠進(jìn)行貼片,其工藝更簡單,且成本較低,所以本壓力傳感器選用貼片膠工藝進(jìn)行貼片。由于固化后膠的軟硬對傳感器的性能有很大影響,通過實(shí)驗(yàn)測試了軟硬膠對壓力傳感器零點(diǎn)輸出的影響,針對同一芯片,分別采用無貼片膠、軟貼片膠(楊氏模量約為1~100 MPa量級,玻璃化溫度低于-40 ℃)、硬貼片膠(楊氏模量為3.56 GPa,玻璃化溫度為85℃)等三種情況,在-30~125℃下對傳感器的零點(diǎn)輸出進(jìn)行了測試,測試結(jié)果如圖3所示,圖中給了兩個傳感器樣品的測試結(jié)果。
從圖3可以看出,貼片膠對傳感器零點(diǎn)的影響隨溫度變化而變化,在低溫時(shí),使用了硬膠貼片的傳感器的零點(diǎn)明顯高于使用軟膠與無膠的,這種差別隨著溫度的升高變得越來越小。這主要有三個原因:①貼片膠的彈性模量隨溫度的升高而變小;②貼片膠高溫固化,在低溫時(shí)會引起收縮殘余應(yīng)力;③貼片膠和芯片材料熱膨脹系數(shù)不同產(chǎn)生的熱應(yīng)力。特別需要注意的是,在85℃之后,硬膠的影響突然變小,小到幾乎與無膠的情況相同。這是因?yàn)橛材z的玻璃化溫度(Tg)為85℃,高于Tg點(diǎn)時(shí)膠的楊氏模量變小,因而對傳感器的零點(diǎn)溫漂影響變小。因此,在選用貼片膠時(shí),要求膠的Tg大于傳感器的工作溫度,以確保傳感器零點(diǎn)的穩(wěn)定性和工作的可靠性。
引線鍵合工藝
用于引線鍵合的鍵合線有Al線和Au線,由于Au線性能更優(yōu),所以壓力傳感器的鍵合工藝選用Au線。鍵合時(shí)要使鍵合面保持清沽,否則會影響鍵合強(qiáng)度,等離子清洗是一種能有效提高鍵合強(qiáng)度的方法。由于機(jī)油壓力傳感器工作環(huán)境惡劣,尤其是頻繁的振動會導(dǎo)致金絲有缺陷的地方疲勞斷裂,或者最容易疲勞的位置如第二焊點(diǎn)附近的頸部位置發(fā)生斷裂,因此要求更高的鍵合質(zhì)量。曾對所研制的機(jī)油壓力傳感器進(jìn)行了臺架試驗(yàn),在一批試驗(yàn)樣品中經(jīng)過6×105次加壓和卸壓試驗(yàn)之后,發(fā)現(xiàn)有兩個樣品失效,故障分析結(jié)果表明:一個樣品的失效模式為信號處理電路上的一個電阻損壞;另一個樣品的失效模式為金絲線斷裂,如圖4(a),(b)所示。對于這種情況,可以采用雙金絲鍵合工藝,并盡量選用高純度、低缺陷的金絲,并做好引線鍵合前各封裝器件的清潔工作,如圖4(c)所示。這樣對金絲鍵合工藝進(jìn)行改進(jìn)后,在可靠性試驗(yàn)中,未曾出現(xiàn)金絲斷裂的質(zhì)量問題。
硅油的選擇和處理
由于芯片對所處環(huán)境的要求比較特殊,所以與硅芯片接觸的硅油需要具備以下特點(diǎn):良好的介電性能、盡可能小的熱脹系數(shù)、化學(xué)穩(wěn)定性好以及耐熱和耐寒性能好。硅油的凈化處理是薄膜隔離式壓力傳感器封裝中至關(guān)重要的工藝步驟,因?yàn)槿魞艋桓蓛?,硅油或傳感器受壓部分的充油腔?nèi)就會混有氣體、水分等可壓縮、易揮發(fā)的物質(zhì),在全溫區(qū)內(nèi)的體積變化就會沒有規(guī)律可言,造成外界的待測壓力不能準(zhǔn)確、規(guī)則地傳遞到芯片,從而使得壓力傳感器的溫漂比較嚴(yán)重。這種現(xiàn)象反映在零點(diǎn)的溫漂上,可以用來評價(jià)封裝的好壞。通常,由于在恒壓源激勵的情況下壓力傳感器的靈敏度溫度系數(shù)為負(fù)值,所以壓力傳感器的零點(diǎn)稍有下降,如圖5的樣品5,6,7,8所示;而硅油凈化不充分的壓力傳感器零點(diǎn)的溫漂卻非常大,且隨著溫度的升高而升高,如圖5中的樣品1,2,3,4所示。試驗(yàn)表明,像樣品1,2,3,4這類溫漂很大的傳感器的溫度補(bǔ)償是比較困難的,所以封裝時(shí)必須確保硅油品質(zhì)和填充量恰到好處。
硅油長期在高溫下工作會發(fā)生變化,如果新分解的化學(xué)成分里面有小顆粒的導(dǎo)電物質(zhì),這種物質(zhì)可能會穿過芯片的鈍化層破壞芯片或者介入擴(kuò)散電阻條中間,形成短路或污染。如圖6是隔離封裝的壓力傳感器在125℃高溫下長時(shí)間放置的數(shù)據(jù)曲線。
1#,2#,3#涂敷了保護(hù)層,4#,5#沒有涂敷保護(hù)層??梢钥吹剑瑳]有保護(hù)層的傳感器在高溫下存儲了約200 h后,它的零點(diǎn)突然發(fā)生了變化,之后數(shù)據(jù)不穩(wěn)定;涂了保護(hù)層的壓力傳感器的零點(diǎn)在600多小時(shí)后仍然很穩(wěn)定。因此,為了防止硅油的污染導(dǎo)致壓力傳感器的失效,我們采取了一些必要的措施。首先,選擇高溫下盡可能穩(wěn)定的硅油;其次,盡量選擇具有良好鈍化層的芯片;最后,在不影響靈敏度的前提下,還可以在封裝過程中對芯片以及引線進(jìn)行涂敷鈍化層的處理。
結(jié)論
分析和實(shí)驗(yàn)結(jié)果表明,機(jī)油壓力傳感器封裝材料及各個工藝步驟都會影響傳感器的性能和可靠性。貼片膠性能不能滿足要求,會引起傳感器信號漂移和高溫不穩(wěn)定性;引線鍵合強(qiáng)度不夠,在工作中會斷裂;硅油化學(xué)穩(wěn)定和耐溫性能不夠好,會造成傳感器高溫輸出信號不穩(wěn)定,硅油中的空氣和雜質(zhì)會造成傳感器零點(diǎn)輸出偏大等,這些問題的存在將影響傳感器的長期可靠性。