MOSFET開關(guān)問題詳細(xì)解析
發(fā)布時(shí)間:2018-10-31 責(zé)任編輯:xueqi
【導(dǎo)讀】我們先來看以下問題:為什么在Vce下降前ic就開始上升了呢?在t0到t1和t2到t3這段時(shí)間內(nèi)是開關(guān)管的哪個(gè)時(shí)期呢?首先我們來解釋問題,為什么在Vce下降前ic就開始上升了呢?
圖1
這里就用MOSFET代替BJT了,所以ids = ic,Vds=Vce,Coss也就是Cds代表輸出電容。簡單來說就是當(dāng)MOS管一開始導(dǎo)通時(shí)輸出電容Coss還保持Vds電壓,隨著Ids電流越來越大,Vds電壓終于保持不住,開始下降。直到管子完全開啟。比較詳細(xì)的開啟過程是由Miller Plateau造成的,這里借用了網(wǎng)上一些解釋Miller Plateau的圖,如果有不清楚的就請見諒了。
階段1,Vgs 《 Vth,管子是關(guān)斷的,所以Ids = 0,Vds=high,ig充電Cgs。
階段2,Vgs 》 Vth,管子開啟,Ids從0增加到iL被外部電流源電感鉗住,Coss(Cds)上電壓不能突變,保持Vds。
階段3,進(jìn)入Miller plateau,Vgs 》 Vth,管子仍然保持開啟,Coss開始discharge,Vds電壓開始下降,于此同時(shí)Cgd開始被ig充電。Vg保持不變。
階段4,Vd下降到接近0點(diǎn),ig繼續(xù)給ig充電Cgs和Cgd充電。
階段5,Vg到達(dá)gate driver預(yù)定的電壓,管子開啟過程完成。
關(guān)斷過程和開啟過程類似,也會(huì)有Miller plateau效應(yīng)。
我們可以看到,如果如果MOS管開啟時(shí)VDS上有原始電壓,那么MOS開啟過程中就會(huì)有Ids和Vds的重疊,那么會(huì)帶來Switching Loss。由于Coss上的能量在極短時(shí)間內(nèi)被釋放,電容上能量會(huì)損失掉(換算為Loss為0.5*Coss*Vds^2*fs),而且只要是非零電壓開啟(Non Zero Voltage Switching),會(huì)給PCB和MOS的寄生電感與電容形成的諧振腔(resonant tank)引入比較大的dv/dt或者di/dt激勵(lì),引起比較大的ringing,甚至超過管子的額定電壓,燒毀管子。
那么我們可以避免這種情況的發(fā)生嗎?答案是可以的,也就是很多人提到的Zero Voltage Switching,雖然會(huì)付出一定的代價(jià)。我們先看如何能實(shí)現(xiàn)軟開關(guān)開啟Zero Voltage Switching Turn on。
圖二
實(shí)現(xiàn)ZVS turn on很簡單,只需要在我們開啟管子前,Vds上的電壓為零就好,這樣Ids和Vds就沒有重疊了,turn on switching loss為零,沒有high di/dt, dv/dt問題,沒有ringing,完美!那么如何實(shí)現(xiàn)ZVS turn on呢?個(gè)人覺得分兩種情況討論:1為PWM converter,2為resonant converter(諧振變換器)。
一, 對(duì)于PWM converter,就拿最簡單的兩個(gè)管子的half bridge(其實(shí)也就是buck converter)做例子。
圖三
對(duì)于half bridge 實(shí)現(xiàn)ZVS turn on,我們希望當(dāng)上管Q1開啟時(shí)電流是流進(jìn)switching node (vsw)的,也就是圖中電感電流為負(fù)值,當(dāng)下管Q2開啟時(shí)我們希望電流是流出switching node (vsw)的,也就是電感電流為正值。為什么這樣就可以實(shí)現(xiàn)ZVS turn on了呢?我們就看上管Q1開啟過程。如果電感電流iL為負(fù),這時(shí)候我們先關(guān)閉Q2,這時(shí)候Q1還未開啟,在這個(gè)deadtime中iL會(huì)charge Q2的Coss,使Vsw抬高到Vin,當(dāng)然不能超過Vin,因?yàn)镼1的body diode會(huì)導(dǎo)通,鉗位住Vsw到Vin,這時(shí)候Q1的Vds就是Vin-Vsw=0,這時(shí)候我們開啟Q1就實(shí)現(xiàn)ZVS了。同理對(duì)于Q2開啟時(shí),如果電感電流為正,那么當(dāng)我們首先關(guān)閉Q1管時(shí),Vsw就會(huì)被電感電流拉低到0,因?yàn)閕L》0, Q2的Coss會(huì)discharged到0,然后我們再開啟Q2,就可以達(dá)到ZVS了。這里我有一張其他Topology的PWM converter的波形圖,也和buck工作原理類似,大概可以看看基本原理,也就是電感電流為負(fù)時(shí),Q1可以實(shí)現(xiàn)ZVS,讓Vsw的ringing比較小。而當(dāng)電感電流為正時(shí),實(shí)現(xiàn)不了ZVS,Vsw的ringing就比較大了。
圖四
二, 對(duì)于resonant converter,其實(shí)道理類似,我們也希望在我們開啟管子前,Vds上的電壓為零。那么對(duì)于resonant converter的half bridge,我們希望看到的impedance為inductive,也就是感性的,這樣switching node流出的電流I就會(huì)滯后于電壓V,現(xiàn)在ZVS turn on。
圖五
這是因?yàn)槿绻娏鱅是滯后與電壓V的,這樣在Q1開啟之前電流I為負(fù)值就會(huì)charge Q2的Coss,同時(shí)discharge Q1的Coss,讓V到Vin,這樣Q1就實(shí)現(xiàn)ZVS turn on了。Q2開啟之前,電流I為正,也會(huì)discharge Q2的Coss,和charge Q1的Coss,讓V到0,這樣Q2就實(shí)現(xiàn)ZVS了。
總結(jié)起來,要實(shí)現(xiàn)ZVS turn on,對(duì)于PWM,需要電感電流為負(fù),而且需要足夠的deadtime;對(duì)于resonant converter,需要impedance為inductive,而且也需要deadtime。那么有人可能要問,對(duì)于PWM converter到底電感電流為多負(fù)?deadtime至少為多少可以保證ZVS?對(duì)于resonant converter, impedance 到底為多少?deadtime為多少可以保證ZVS?
要回答這個(gè)定量問題,其實(shí)是不那么簡單的。對(duì)于PWM converter,參考quasi-square-wave ZVS buck converters,我們是可以畫出state plane,然后根據(jù)state plane圖的幾何關(guān)系定量分析出來的,但是非常繁瑣,常常是七八個(gè)三角函數(shù)等式求解。所以我個(gè)人愚見,在設(shè)計(jì)上,就讓開關(guān)頻率小點(diǎn),電感值小點(diǎn),讓電感電流ripple足夠大,能達(dá)到負(fù)值就差不多了。對(duì)于resonant converter,倒是可以簡單地通過積分方法,算出i與t的積分,讓這個(gè)it積分大于Coss上的charge就行。比如已知impedance,算出V與I的phase shift,然后換算成時(shí)間td,然后在td上對(duì)電感電流進(jìn)行積分,只要這個(gè)積分大于等于Coss*Vin就行了。
圖六
說了soft switching, ZVS這么多好處,我們談?wù)剆oft switching的弊端。對(duì)于PWM converter我們可以看到為了實(shí)現(xiàn)ZVS,我們減小了電感值,讓電感電流ripple變大,最終達(dá)到負(fù)值,實(shí)現(xiàn)了ZVS,但是付出的代價(jià)就是inductor current的RMS值變大,各個(gè)元器件的導(dǎo)通損耗(conduction loss)變大,所以我們是犧牲了conduction loss換取switching loss和小ringing。而且如果輸出電流越大,我們需要實(shí)現(xiàn)ZVS的難度更大,需要進(jìn)一步增大ripple,造成RMS電流進(jìn)一步增大,很有可能得不償失,造成converter整體效率下降。對(duì)于resonant converter,在頻率很高的情況下,有時(shí)候需要讓impedance非常inductive,也就是I滯后于V非常厲害才能有足夠的charge q來實(shí)現(xiàn)ZVS,這其實(shí)也是變相降低了有功功率的傳輸,因?yàn)閂和I的phase lag比較大,造成了converter的circulating current比較大,RMS電流值增大,也是增大了conduction loss。所以在設(shè)計(jì)或者考慮ZVS等soft switching時(shí)需要對(duì)系統(tǒng)有個(gè)整體loss的把握,在conduction loss和switching loss之間做好trade-off,這樣才能設(shè)計(jì)出效率最高,最魯棒的converter。
另外soft switching軟開關(guān)技術(shù)還有ZVS turn off,Zero Current Switching turn on,Zero Current Switching turn off。這里就簡單介紹了ZVS turn on,因?yàn)閆VS turn on對(duì)于MOSFET和GaN比較重要,其他softswitching技術(shù)這里就不一一敘述了。
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級(jí)電容的“外衣”,看看超級(jí)電容“超級(jí)”在哪兒
- DigiKey 誠邀各位參會(huì)者蒞臨SPS 2024?展會(huì)參觀交流,體驗(yàn)最新自動(dòng)化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
音頻IC
音頻SoC
音頻變壓器
引線電感
語音控制
元件符號(hào)
元器件選型
云電視
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器