- 雙開關(guān)正激轉(zhuǎn)換器更易于實(shí)現(xiàn)
- 探討雙開關(guān)正激轉(zhuǎn)換器在低待機(jī)能耗應(yīng)用中的設(shè)計(jì)
- 比較三次繞組、RCD鉗位及雙開關(guān)正激等常見的磁芯復(fù)位技術(shù);
- 分析雙開關(guān)正激轉(zhuǎn)換器的優(yōu)勢
- 基于雙開關(guān)正激磁芯復(fù)位技術(shù)的NCP1252固定頻率控制器
摘要:與三次繞組和RCD鉗位等常見變壓器磁芯復(fù)位技術(shù)相比,雙開關(guān)正激技術(shù)不需要特殊的復(fù)位電路,更易于實(shí)現(xiàn),且保證可靠的磁芯復(fù)位,適用的功率等級比單開關(guān)正激技術(shù)更高。安森美半導(dǎo)體的NCP1252是一款增強(qiáng)型雙開關(guān)正激轉(zhuǎn)換器,具有可調(diào)節(jié)開關(guān)頻率及跳周期模式,帶閂鎖過流保護(hù)等多種保護(hù)特性,適合計(jì)算機(jī)ATX電源、交流適配器、UC38xx替代及其它任何需要低待機(jī)能耗的應(yīng)用。
[page]
1) 變壓器匝數(shù)比、占空比及勵磁電感
首先計(jì)算變壓器在連續(xù)導(dǎo)電模式(CCM)下的匝數(shù)比N。
根據(jù)等式(1)可以推導(dǎo)出等式(2):
其中,Vout是輸出電壓,η是目標(biāo)能效,Vbulk min是最小輸入電壓(即350 Vdc),DCmax是NCP1252的最大占空比,N是變壓器匝數(shù)比。
相應(yīng)我們也可以驗(yàn)證出高輸入線路電壓(410 Vdc)時(shí)最小占空比,見等式(3):
為了恰當(dāng)?shù)卮判緩?fù)位,需要極小的勵磁電流來對繞組電壓反相。根據(jù)經(jīng)驗(yàn)法則,勵磁電流為初次峰值電流(Ip_pk)的10%。其中,Ip_pk取值0.94,這數(shù)值的計(jì)算過程參見后文。變壓器勵磁電感的計(jì)算見等式(4):2) LC輸出濾波器
首先選擇交越頻率(fC)。因開關(guān)噪聲緣故,fC大于10 kHz時(shí)要求無噪聲布線,難于設(shè)計(jì)。故不推薦在較高的頻率交越,直接選定fC為10 kHz。
如果我們假定由fC、輸出電容(Cout)及最大階躍負(fù)載電流(ΔIout)確定出ΔIout 時(shí)的最大壓降(Vout)為250 mV,我們就能寫出下述等式:
我們選擇的是2顆松下FM系列的1,000 µF@16V 電容。從電容規(guī)范中解析出:
Ic,rms=5.36 A @ TA=+105 ℃RESR,low = 8.5 mW @ TA = +20 ℃
RESR,high = 28.5 mW @ TA = -10 ℃
接下來,以ΔIout = 5 A 來計(jì)算ΔVout ,見等式(7):
這里有一個經(jīng)驗(yàn)法則,就是選擇等式(6)計(jì)算出來的值一半的等效串聯(lián)電阻(ESR)電容:RESR,max = 22 mW @ 0 ℃。這個規(guī)則考慮到了電容工藝變化,以及留出一些電源在極低環(huán)境溫度條件下啟動工作時(shí)的裕量。
最大峰值到峰值電流(ΔIL)的計(jì)算見等式(8):
要獲取輸出電感值,我們能夠?qū)懗鲫P(guān)閉時(shí)間期間的降壓紋波電流等式:
對等式(9)進(jìn)行轉(zhuǎn)換,就可以得到等式(10),最終我們選擇27 µH的標(biāo)準(zhǔn)值。
輸出電容的均方根電流(ICout,rms)計(jì)算見等式(11):
其中,額定電感時(shí)間常數(shù)(τ)的計(jì)算見等式(12):
3) 變壓器電流
經(jīng)過一系列計(jì)算(詳細(xì)計(jì)算過程參見參考資料3),可以得到:次級峰值電流(IL_pk)為11.13 A,次級谷底電流(IL_valley)為8.86 A,初級峰值電流(Ip_pk)為0.95 A,初級谷底電流(Ip_valley)為0.75 A,初級均方根電流(Ip,rms)為0.63 A。
4) MOSFET
由于NCP1252是雙開關(guān)正激轉(zhuǎn)換器,故作為開關(guān)的功率MOSFET的最大電壓限制為輸入電壓。通常漏極至源極擊穿電壓(BVDSS)施加了等于15%的降額因數(shù),如果我們選擇500 V的功率MOSFET,降額后的最大電壓應(yīng)該是:500 V x 0.85 = 425 V。我們選擇的功率MOSFET是采用TO220封裝的FDP16N50,其BVDSS為500 V,導(dǎo)通阻抗(RDS(on))為0.434 Ω(@Tj=110℃),總門電荷(QG)為45 nC,門極至漏極電荷(QGD)為14 nC。
MOSFET的導(dǎo)電損耗、開關(guān)導(dǎo)通損耗計(jì)算見等式(13)到(14):
其中,交迭時(shí)間(Δt)由下列等式計(jì)算得出:
MOSFET的開關(guān)關(guān)閉損耗見等式(16):
其中,交迭時(shí)間(Δt)由下列等式計(jì)算得出:
因此,MOSFET的總損耗為:
5) 二極管
次極二極管D1和D2維持相同的峰值反相電壓(PIV),結(jié)合二極管降額因數(shù)(kD)為40%,可以計(jì)算出PIV,見等式(19):
由于PIV<100 V,故能夠選擇30 A、60 V、TO-220封裝的肖特基二極管MBRB30H60CT。
二極管導(dǎo)通時(shí)間期間的導(dǎo)電損耗為:
關(guān)閉時(shí)間期間的導(dǎo)電損耗為:
NCP1252應(yīng)用設(shè)計(jì):NCP1252元件計(jì)算
1) 用于選擇開關(guān)頻率的電阻Rt
采用一顆簡單電阻,即可在50至500 kHz范圍之間選擇開關(guān)頻率(FSW)。假定開關(guān)頻率為125 kHz,那么我們就可以得到:
其中,VRt是Rt引腳上呈現(xiàn)的內(nèi)部電壓參考(2.2 V)。
2) 感測電阻
NCP1252的最大峰值電流感測電壓達(dá)1 V。感測電阻(Rsense)以初級峰值電流的20%余量來計(jì)算,其中10%為勵磁電流,10%為總公差:
3) 斜坡補(bǔ)償
斜坡補(bǔ)償旨在防止頻率為開關(guān)頻率一半時(shí)出現(xiàn)次斜坡振蕩,這時(shí)轉(zhuǎn)換器工作在CCM,占空比接近或高于50%。由于是正激拓?fù)浣Y(jié)構(gòu),重要的是考慮由勵磁電廠所致的自然補(bǔ)償。根據(jù)所要求的斜坡補(bǔ)償(通常為50%至100%),僅能夠外部增加斜坡補(bǔ)償與自然補(bǔ)償之間的差值。
目標(biāo)斜坡補(bǔ)償?shù)燃墳?00%。相關(guān)計(jì)算等式如下:
內(nèi)部斜坡:
初級自然斜坡:
次級向下斜坡:
自然斜坡補(bǔ)償:
[page]
由于自然斜坡補(bǔ)償?shù)陀?00%的目標(biāo)斜坡補(bǔ)償,我們需要計(jì)算約33%的補(bǔ)償:
由于RcompCCS網(wǎng)絡(luò)濾波需要約220 ns的時(shí)間常數(shù),故:
4) 輸入欠壓電阻
輸入欠壓(BO)引腳電壓低于VBO參考時(shí)連接IBO電流源,從而產(chǎn)生BO磁滯。
NCP1252演示板圖片及性能概覽
NCP1252演示板的詳細(xì)電路圖參見參考資料2,其頂視圖和底視圖則見圖3。