你的位置:首頁 > EMC安規(guī) > 正文

針對負電壓浪涌的對策及其效果

發(fā)布時間:2022-02-11 責任編輯:wenwei

【導讀】繼上一篇“正電壓浪涌對策”之后,本文將會通過示例來看針對負電壓浪涌的對策及其效果。


本文的關(guān)鍵要點


?通過采取措施防止SiC MOSFET中柵極-源極間電壓的負電壓浪涌,來防止SiC MOSFET的LS導通時,SiC MOSFET的HS誤導通。

?具體方法取決于各電路中所示的對策電路的負載。

?如果柵極驅(qū)動IC沒有控制功能,則很難通過米勒鉗位進行抑制。

?作為米勒鉗位的代替方案,通過結(jié)合使用鉗位肖特基勢壘二極管和誤導通抑制電容器,與正浪涌之間取得平衡,從而達到優(yōu)化的目的。


繼上一篇“正電壓浪涌對策”之后,本文將會通過示例來看針對負電壓浪涌的對策及其效果。


關(guān)于SiC功率元器件中柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的R課堂基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”中已進行了詳細說明。


負電壓浪涌對策


下圖顯示了同步升壓電路中LS關(guān)斷時柵極-源極電壓的行為,該圖在之前的文章中也使用過。要想抑制事件(IV),即HS(非開關(guān)側(cè))的VGS的負浪涌,正如在上一篇文章“浪涌抑制電路”的表格中所總結(jié)的,采用浪涌抑制電路的米勒鉗位用MOSFET Q2、或鉗位用SBD(肖特基勢壘二極管)D3是很有效的方法(參見下面的驗證電路)。


12.png


下面的電路是上一篇中用來驗證正浪涌對策的抑制電路。使用“(a)無抑制電路、(b)僅有米勒鉗位用的MOSFET(Q2)、(c)僅有鉗位用的肖特基勢壘二極管、(d)僅有誤導通抑制電容器C1”這四種電路,通過“雙脈沖測試”確認了VGS的浪涌電壓。


1644399940649065.png


下面是雙脈沖測試中關(guān)斷時的波形、從上到下依次顯示了開關(guān)側(cè)柵極-源極電壓(VGS_HS)、非開關(guān)側(cè)柵極-源極電壓(VGS_LS)、漏極-源極電壓(VDS)和漏極電流(ID)。圖中一并列出了前述的抑制電路(a)、(b)、(c)、以及同時具備抑制電路(b)和(c)的電路(e)的波形。


1644399927131203.png


從這個波形圖中可以看出,除了沒有對策電路的(a)外,其他任何一個抑制電路都可以消除負浪涌。


接下來,請看僅連接了誤導通抑制電容器C1的驗證電路(d)在雙脈沖測試中的關(guān)斷波形。電路圖與上面給出的電路圖一樣。波形(a)是沒有C1的比較用波形,波形(b)、(c)和(d)是有C1、C1分別為2.2nF、3.3nF和4.7nF時的波形。與不加C1的(a)相比,加了C1的波形(b)、(c)、(d)中,VGS_LS的負浪涌略有降低,但效果并不明顯。因此,作為對策,需要從抑制電路(b)和(c)中作出選擇,但由于(c)不能抑制正浪涌,所以最終選擇(b)。如果米勒鉗位控制困難且無法選擇抑制電路(b),則需要通過結(jié)合使用(c)和(d)來測試和優(yōu)化整個系的效率。


1644399913962848.png



免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。


推薦閱讀:


最大化的發(fā)揮DC/DC轉(zhuǎn)換器的性能

探討正電壓浪涌的對策和其效果

派恩杰SiC驅(qū)動設(shè)計新探索:如何避免誤開通?

理想開關(guān)自身會帶來挑戰(zhàn)

如何快速了解預采購的電源器件性能?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉