設(shè)計(jì)開關(guān)電源時(shí)防止EMI的措施:
你的位置:首頁 > EMC安規(guī) > 正文
賺翻了!史上最全開關(guān)電源傳導(dǎo)與輻射超標(biāo)整改方案
發(fā)布時(shí)間:2015-01-29 責(zé)任編輯:wenwei
[導(dǎo)讀]對于開關(guān)電源來說,由于開關(guān)管、整流管工作在大電流、高電壓的條件下,對外界會產(chǎn)生很強(qiáng)的電磁干擾,因此開關(guān)電源的傳導(dǎo)發(fā)射和電磁輻射發(fā)射相對其它產(chǎn)品來說更加難以實(shí)現(xiàn)電磁兼容,但如果我們對開關(guān)電源產(chǎn)生電磁干擾的原理了解清楚后,就不難找到合適的對策,將傳導(dǎo)發(fā)射電平和輻射發(fā)射電平降到合適的水平,實(shí)現(xiàn)電磁兼容性設(shè)計(jì)。
開關(guān)電源電磁干擾的產(chǎn)生機(jī)理及其傳播途徑
功率開關(guān)器件的高額開關(guān)動作是導(dǎo)致開關(guān)電源產(chǎn)生電磁干擾(EMI)的主要原因。開關(guān)頻率的提高一方面減小了電源的體積和重量,另一方面也導(dǎo)致了更為嚴(yán)重的EMI問題。開關(guān)電源工作時(shí),其內(nèi)部的電壓和電流波形都是在非常短的時(shí)間內(nèi)上升和下降的,因此,開關(guān)電源本身是一個(gè)噪聲發(fā)生源。開關(guān)電源產(chǎn)生的干擾,按噪聲干擾源種類來分,可分為尖峰干擾和諧波干擾兩種;若按耦合通路來分,可分為傳導(dǎo)干擾和輻射干擾兩種。使電源產(chǎn)生的干擾不至于對電子系統(tǒng)和電網(wǎng)造成危害的根本辦法是削弱噪聲發(fā)生源,或者切斷電源噪聲和電子系統(tǒng)、電網(wǎng)之間的耦合途徑?,F(xiàn)在按噪聲干擾源來分別說明:
1、二極管的反向恢復(fù)時(shí)間引起的干擾
交流輸入電壓經(jīng)功率二極管整流橋變?yōu)檎颐}動電壓,經(jīng)電容平滑后變?yōu)橹绷?,但電容電流的波形不是正弦波而是脈沖波。由電流波形可知,電流中含有高次諧波。大量電流諧波分量流入電網(wǎng),造成對電網(wǎng)的諧波污染。另外,由于電流是脈沖波,使電源輸入功率因數(shù)降低。
高頻整流回路中的整流二極管正向?qū)〞r(shí)有較大的正向電流流過,在其受反偏電壓而轉(zhuǎn)向截止時(shí),由于PN結(jié)中有較多的載流子積累,因而在載流子消失之前的一段時(shí)間里,電流會反向流動,致使載流子消失的反向恢復(fù)電流急劇減少而發(fā)生很大的電流變化(di/dt)。
2、開關(guān)管工作時(shí)產(chǎn)生的諧波干擾
功率開關(guān)管在導(dǎo)通時(shí)流過較大的脈沖電流。例如正激型、推挽型和橋式變換器的輸入電流波形在阻性負(fù)載時(shí)近似為矩形波,其中含有豐富的高次諧波分量。當(dāng)采用零電流、零電壓開關(guān)時(shí),這種諧波干擾將會很小。另外,功率開關(guān)管在截止期間,高頻變壓器繞組漏感引起的電流突變,也會產(chǎn)生尖峰干擾。
3、交流輸入回路產(chǎn)生的干擾
無工頻變壓器的開關(guān)電源輸入端整流管在反向恢復(fù)期間會引起高頻衰減振蕩產(chǎn)生干擾。開關(guān)電源產(chǎn)生的尖峰干擾和諧波干擾能量,通過開關(guān)電源的輸入輸出線傳播出去而形成的干擾稱之為傳導(dǎo)干擾;而諧波和寄生振蕩的能量,通過輸入輸出線傳播時(shí),都會在空間產(chǎn)生電場和磁場。這種通過電磁輻射產(chǎn)生的干擾稱為輻射干擾。
4、其他原因
元器件的寄生參數(shù),開關(guān)電源的原理圖設(shè)計(jì)不夠完美,印刷線路板(PCB)走線通常采用手工布置,具有很大的隨意性,PCB的近場干擾大,并且印刷板上器件的安裝、放置,以及方位的不合理都會造成EMI干擾。這增加了PCB分布參數(shù)的提取和近場干擾估計(jì)的難度。
Flyback架構(gòu)noise在頻譜上的反應(yīng)
0.15MHz處產(chǎn)生的振蕩是開關(guān)頻率的3次諧波引起的干擾;
0.2MHz處產(chǎn)生的振蕩是開關(guān)頻率的4次諧波和Mosfet振蕩2(190.5KHz)基波的迭加,引起的干擾;所以這部分較強(qiáng);
0.25MHz處產(chǎn)生的振蕩是開關(guān)頻率的5次諧波引起的干擾;
0.35MHz處產(chǎn)生的振蕩是開關(guān)頻率的7次諧波引起的干擾;
0.39MHz處產(chǎn)生的振蕩是開關(guān)頻率的8次諧波和Mosfet振蕩2(190.5KHz)基波的迭加引起的干擾;
1.31MHz處產(chǎn)生的振蕩是Diode振蕩1(1.31MHz)的基波引起的干擾;
3.3MHz處產(chǎn)生的振蕩是Mosfet振蕩1(3.3MHz)的基波引起的干擾;
開關(guān)管、整流二極管的振蕩會產(chǎn)生較強(qiáng)的干擾
設(shè)計(jì)開關(guān)電源時(shí)防止EMI的措施:
1.把噪音電路節(jié)點(diǎn)的PCB銅箔面積最大限度地減小,如開關(guān)管的漏極、集電極、初次級繞組的節(jié)點(diǎn)等;
2.使輸入和輸出端遠(yuǎn)離噪音元件,如變壓器線包、變壓器磁芯、開關(guān)管的散熱片等等;
3.使噪音元件(如未遮蔽的變壓器線包、未遮蔽的變壓器磁芯和開關(guān)管等等)遠(yuǎn)離外殼邊緣,因?yàn)樵谡2僮飨峦鈿み吘壓芸赡芸拷饷娴慕拥鼐€;
4.如果變壓器沒有使用電場屏蔽,要保持屏蔽體和散熱片遠(yuǎn)離變壓器;
5.盡量減小以下電流環(huán)的面積:次級(輸出)整流器、初級開關(guān)功率器件、柵極(基極)驅(qū)動線路、輔助整流器
6.不要將門極(基極)的驅(qū)動返饋環(huán)路和初級開關(guān)電路或輔助整流電路混在一起;
7.調(diào)整優(yōu)化阻尼電阻值,使它在開關(guān)的死區(qū)時(shí)間里不產(chǎn)生振鈴響聲;
8.防止EMI濾波電感飽和;
9.使拐彎節(jié)點(diǎn)和次級電路的元件遠(yuǎn)離初級電路的屏蔽體或者開關(guān)管的散熱片;
10.保持初級電路的擺動的節(jié)點(diǎn)和元件本體遠(yuǎn)離屏蔽或者散熱片;
11.使高頻輸入的EMI濾波器靠近輸入電纜或者連接器端;
12.保持高頻輸出的EMI濾波器靠近輸出電線端子;
13.使EMI濾波器對面的PCB板的銅箔和元件本體之間保持一定距離;
14.在輔助線圈的整流器的線路上放一些電阻;
15.在磁棒線圈上并聯(lián)阻尼電阻;
[page]
16.在輸出RF濾波器兩端并聯(lián)阻尼電阻;
17.在PCB設(shè)計(jì)時(shí)允許放1nF/500V陶瓷電容器或者還可以是一串電阻,跨接在變壓器的初級的靜端和輔助繞組之間;
18.保持EMI濾波器遠(yuǎn)離功率變壓器,尤其是避免定位在繞包的端部;
19.在PCB面積足夠的情況下,可在PCB上留下放屏蔽繞組用的腳位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽繞組兩端;
20.空間允許的話在開關(guān)功率場效應(yīng)管的漏極和門極之間放一個(gè)小徑向引線電容器(米勒電容,10皮法/1千伏電容);
21.空間允許的話放一個(gè)小的RC阻尼器在直流輸出端;
22.不要把AC插座與初級開關(guān)管的散熱片靠在一起。
開關(guān)電源EMI的特點(diǎn)
作為工作于開關(guān)狀態(tài)的能量轉(zhuǎn)換裝置,開關(guān)電源的電壓、電流變化率很高,產(chǎn)生的干擾強(qiáng)度較大;干擾源主要集中在功率開關(guān)期間以及與之相連的散熱器和高平變壓器,相對于數(shù)字電路干擾源的位置較為清楚;開關(guān)頻率不高(從幾十千赫和數(shù)兆赫茲),主要的干擾形式是傳導(dǎo)干擾和近場干擾;而印刷線路板(PCB)走線通常采用手工布線,具有更大的隨意性,這增加了PCB分布參數(shù)的提取和近場干擾估計(jì)的難度。
1MHZ以內(nèi)----以差模干擾為主,增大X電容就可解決;
1MHZ---5MHZ---差模共?;旌?,采用輸入端并一系列X電容來濾除差摸干擾并分析出是哪種干擾超標(biāo)并解決;
5M以上---以共摸干擾為主,采用抑制共摸的方法。對于外殼接地的,在地線上用一個(gè)磁環(huán)繞2圈會對10MHZ以上干擾有較大的衰減(diudiu2006);對于25--30MHZ不過可以采用加大對地Y電容、在變壓器外面包銅皮、改變PCBLAYOUT、輸出線前面接一個(gè)雙線并繞的小磁環(huán),最少繞10圈、在輸出整流管兩端并RC濾波器;
30---50MHZ---普遍是MOS管高速開通關(guān)斷引起,可以用增大MOS驅(qū)動電阻,RCD緩沖電路采用1N4007慢管,VCC供電電壓用1N4007慢管來解決;
100---200MHZ---普遍是輸出整流管反向恢復(fù)電流引起,可以在整流管上串磁珠;
100MHz-200MHz之間大部分出于PFCMOSFET及PFC二極管,現(xiàn)在MOSFET及PFC二極管串磁珠有效果,水平方向基本可以解決問題,但垂直方向就很無奈了。
開關(guān)電源的輻射一般只會影響到100M以下的頻段,也可以在MOS、二極管上加相應(yīng)吸收回路,但效率會有所降低。
1MHZ以內(nèi)----以差模干擾為主
1.增大X電容量;
2.添加差模電感;
3.小功率電源可采用PI型濾波器處理(建議靠近變壓器的電解電容可選用較大些)。
1MHZ---5MHZ---差模共模混合
采用輸入端并聯(lián)一系列X電容來濾除差摸干擾并分析出是哪種干擾超標(biāo)并以解決。
1.對于差模干擾超標(biāo)可調(diào)整X電容量,添加差模電感器,調(diào)差模電感量;
2.對于共模干擾超標(biāo)可添加共模電感,選用合理的電感量來抑制;
3.也可改變整流二極管特性來處理一對快速二極管如FR107一對普通整流二極管1N4007。
5M以上---以共摸干擾為主,采用抑制共摸的方法
對于外殼接地的,在地線上用一個(gè)磁環(huán)串繞2-3圈會對10MHZ以上干擾有較大的衰減作用;也可選擇緊貼變壓器的鐵芯粘銅箔,銅箔閉環(huán)。處理后端輸出整流管的吸收電路和初級大電路并聯(lián)電容的大小。
對于20--30MHZ
1.對于一類產(chǎn)品可以采用調(diào)整對地Y2電容量或改變Y2電容位置;
2.調(diào)整一二次側(cè)間的Y1電容位置及參數(shù)值;
3.在變壓器外面包銅箔、變壓器最里層加屏蔽層,調(diào)整變壓器的各繞組的排布;
4.改變PCBLAYOUT;
5.輸出線前面接一個(gè)雙線并繞的小共模電感;
6.在輸出整流管兩端并聯(lián)RC濾波器且調(diào)整合理的參數(shù);
7.在變壓器與MOSFET之間加BEADCORE;
8.在變壓器的輸入電壓腳加一個(gè)小電容;
9.可以用增大MOS驅(qū)動電阻。
30---50MHZ普遍是MOS管高速開通關(guān)斷引起
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- “扒開”超級電容的“外衣”,看看超級電容“超級”在哪兒
- DigiKey 誠邀各位參會者蒞臨SPS 2024?展會參觀交流,體驗(yàn)最新自動化產(chǎn)品
- 提前圍觀第104屆中國電子展高端元器件展區(qū)
- 高性能碳化硅隔離柵極驅(qū)動器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
歐勝
耦合技術(shù)
排電阻
排母連接器
排針連接器
片狀電感
偏光片
偏轉(zhuǎn)線圈
頻率測量儀
頻率器件
頻譜測試儀
平板電腦