你的位置:首頁 > 電路保護(hù) > 正文

電網(wǎng)現(xiàn)代化中的電力電子和儲能

發(fā)布時間:2023-08-31 責(zé)任編輯:lina

【導(dǎo)讀】隨著世界轉(zhuǎn)向更多地使用可再生能源,日常家庭使用的這種能源的存儲和轉(zhuǎn)換正在發(fā)生轉(zhuǎn)變。在本文中,我們將重點介紹桑迪亞國家實驗室儲能技術(shù)和系統(tǒng)部門的高級技術(shù)人員Jacob Mueller,就這一轉(zhuǎn)型中涉及的主要趨勢和挑戰(zhàn)所做的演講,重點介紹電力電子和儲能的作用。



隨著世界轉(zhuǎn)向更多地使用可再生能源,日常家庭使用的這種能源的存儲和轉(zhuǎn)換正在發(fā)生轉(zhuǎn)變。在本文中,我們將重點介紹桑迪亞國家實驗室儲能技術(shù)和系統(tǒng)部門的高級技術(shù)人員Jacob Mueller,就這一轉(zhuǎn)型中涉及的主要趨勢和挑戰(zhàn)所做的演講,重點介紹電力電子和儲能的作用。

電網(wǎng)儲能

雙向電能存儲系統(tǒng)能夠吸收能量并將其存儲一段時間,然后再以電能的形式發(fā)送。它可以有多種形式,如圖1所示。多變的可再生能源像風(fēng)能和太陽能一樣正在推動電池存儲系統(tǒng)的發(fā)展。在發(fā)電源頭使用較小電池的分布式方法(稱為DER,即分布式能源)可以使電網(wǎng)更靈活可靠。目前的電池技術(shù)主要適用于短時儲能,在幾秒到幾小時的范圍內(nèi)。泵送水力、壓縮空氣和熱能方法可提供數(shù)小時到一天的存儲,但通常會受到自然資源和地形的限制。如圖1所示,沒有針對季節(jié)性長期儲能的現(xiàn)成解決方案。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖1:儲能技術(shù)與功率和放電時間的關(guān)系(來源:美國能源部,“Potential Benefits of High-Power, High-Capacity Batteries,”,2020年1月)


鋰離子電池儲能系統(tǒng)(BESS)在電池儲能技術(shù)中占據(jù)主導(dǎo)地位。大規(guī)模安裝的例子包括加利福尼亞州埃斯孔迪多(Escondido, California)的AES 120MWh BESS和澳大利亞的Tesla 129MWh系統(tǒng)。圖2顯示了2003年至2020年以及2021年至2023年期間美國大規(guī)模電池容量的增加。這顯示了獨立存儲系統(tǒng)和共同運行存儲系統(tǒng)的加速增長。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖2:美國大規(guī)模增加電池儲能(來源:美國能源信息署,“Battery Storage in the United States: An Update on Market Trends,”,2020年12月)


如圖3所示,雖然電池的價格正在顯著下降,但BESS的總成本還包括其他幾個組件,例如電源轉(zhuǎn)換系統(tǒng),其中包括一個雙向逆變器、一個提供安全和數(shù)據(jù)記錄控制的能源管理系統(tǒng)以及容器、配電和HVAC/熱管理等其他組件。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖3:BESS價格走勢(來源:彭博新能源財經(jīng))


電力電子系統(tǒng)

電力電子系統(tǒng)(PES)在電網(wǎng)中提供兩個關(guān)鍵功能:

  • 在不同類型之間有效轉(zhuǎn)換能量,例如,DC到AC

  • 控制電能的流動


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖4:電力電子系統(tǒng)在儲能和配電中的作用


如圖4所示,從能源生產(chǎn)、傳輸?shù)椒峙涠夹枰狿ES。


在美國電力辦公室的變壓器彈性和先進(jìn)部件(TRAC)計劃突出了能源生產(chǎn)和分配各個方面的未來路線圖。其中一個方面涉及固態(tài)變電站(SSPS)。變電站內(nèi)的SSPS電源轉(zhuǎn)換器可以構(gòu)建為電力電子構(gòu)件的模塊化集合??蓴U(kuò)展性是一個關(guān)鍵的最終目標(biāo)。SSPS路線圖(如圖5所示)突出了從SSPS 1.0到SSPS 3.0的功率密度增加趨勢。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖5:2020 DOE/OE TRAC計劃固態(tài)變電站路線圖(來源:美國能源部2020 TRAC報告)


提高工作電壓是提高功率密度的最佳途徑之一。電池單元電壓由的化學(xué)成分決定。因此,將幾個電池串聯(lián)堆疊形成模塊,然后可以將這些模塊串聯(lián)連接來形成一個電池組。然后可以將電池組并聯(lián)以增加容量從而創(chuàng)建一個單獨的系統(tǒng)。儲能變流器(PCS)控制該系統(tǒng)并向直流鏈路提供電壓。


傳統(tǒng)的PCS解決方案通常由單級逆變器組成,如圖6所示。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖6:傳統(tǒng)的單級PCS


在這種情況下,直流鏈路電壓設(shè)定了約束條件,因為它需要大于峰值交流電壓并留有一定余量。雖然這種單級PCS很便宜,但它存在缺乏可擴(kuò)展性的缺點。在串聯(lián)的電池單元中,電池電壓和電流會發(fā)生變化,并且會隨著老化而變化。最弱的單元可能是一個系統(tǒng)的故障路徑,并且可能成為可靠性瓶頸。因此,這種簡單的單級PCS僅用于600V或更低的電壓。


如圖7所示,多級PCS具有打破直流鏈路電壓約束的優(yōu)勢。多級PCS的一些優(yōu)點是:

  • 第一級電壓更高,可以利用更高電壓的SiC器件和多級逆變器拓?fù)涞膬?yōu)勢

  • 提高了的直流電壓穩(wěn)定性,允許減少直流鏈路電容器并延長使用壽命


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖7:多級PCS


多級方法的一些缺點包括更高的成本,以及增加的功率轉(zhuǎn)換損耗。

通常在每一段內(nèi)使用多級逆變器。與傳統(tǒng)的兩級逆變器相比,它們具有多項優(yōu)勢,包括:

  • 降低諧波失真

  • 更低的開關(guān)損耗

  • 較低PWM開關(guān)頻率

  • 提高額定功率

  • 能夠?qū)㈩~定電壓較低的設(shè)備用于較高電壓的應(yīng)用


用于提高可靠性的模塊化可以通過多種方式實現(xiàn)。圖8顯示了一個并行PCS。每個并聯(lián)支路中的模塊可以是熱插拔的存儲/轉(zhuǎn)換器模塊,并且每個支路中的電池參數(shù)不必完全匹配。這里的可擴(kuò)展性仍然受到每個DC/DC轉(zhuǎn)換器級內(nèi)的電壓增益的限制。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖8:并行PCS


圖9描繪了一個串聯(lián)連接的PCS。這具有產(chǎn)生更高直流鏈路電壓的優(yōu)勢,能夠減少電纜的傳導(dǎo)損耗。這種架構(gòu)對于DC/DC轉(zhuǎn)換器中即使是微小的增益也更寬容。


電網(wǎng)現(xiàn)代化中的電力電子和儲能

圖9:級聯(lián)的串聯(lián)PCS


結(jié)論

基于SiC的電力電子技術(shù)正在幫助徹底的改變存儲和電網(wǎng)分配系統(tǒng),使分布式可再生能源發(fā)電的使用更加實用。關(guān)鍵的瓶頸仍然存在,特別是在長期儲能、大容量鋰離子電池的制造以及進(jìn)入PCS階段的磁性元件等無源元件方面。


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

汽車照明的四大設(shè)計維度

REASUNOS瑞森半導(dǎo)體超高壓MOS在輔助電源上的應(yīng)用

使用 Z32F128 MCU 進(jìn)行空間矢量調(diào)制

反向紋波電流

隔離偏置變壓器寄生電容如何影響 EMI 性能


特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉