【導(dǎo)讀】二極管是電子電路中很常用的元器件,非常常見,二極管具有正向?qū)?,反向截止的特性?/strong>
二極管是電子電路中很常用的元器件,非常常見,二極管具有正向?qū)?,反向截止的特性?/span>
在二極管的正向端(正極)加正電壓,負向端(負極)加負電壓,二極管導(dǎo)通,有電流流過二極管。在二極管的正向端(正極)加負電壓,負向端(負極)加正電壓,二極管截止,沒有電流流過二極管。這就是所說的二極管的單向?qū)ㄌ匦?。下面解釋為什么二極管會單向?qū)ā?/span>
二極管為什么只能單向?qū)щ姡?/span>
二極管是由PN結(jié)組成的,即P型半導(dǎo)體和N型半導(dǎo)體,因此PN結(jié)的特性導(dǎo)致了二極管的單向?qū)щ娞匦?。PN結(jié)如下圖所示:
在P型和N型半導(dǎo)體的交界面附近,由于N區(qū)的自由電子濃度大,于是帶負電荷的自由電子會由N區(qū)向電子濃度低的P區(qū)擴散,擴散的結(jié)果使PN結(jié)中靠P區(qū)一側(cè)帶負電,靠N區(qū)一側(cè)帶正電,形成由N區(qū)指向P區(qū)的電場。diangon.com即PN結(jié)內(nèi)電場。內(nèi)電場將阻礙多數(shù)載流子的繼續(xù)擴散,又稱為阻檔層。
PN結(jié)為什么可以單向?qū)щ姡?/span>
二極管的單向?qū)щ娞匦杂猛竞軓V,到底是什么原因讓電子如此聽話呢?它的微觀機理是什么呢?這里簡單形象介紹一下:
假設(shè)有一塊P型半導(dǎo)體(用黃色代表空穴多)和一塊N型半導(dǎo)體(用綠色代表電子多),它們自然狀態(tài)下分別都是電中性的,即不帶電。如圖1所示。
圖1. P型和N型半導(dǎo)體
把它們結(jié)合在一起,就形成PN結(jié)。邊界處N型半導(dǎo)體的電子自然就會跑去P型區(qū)填補空穴,留下失去電子而顯正電的原子。相應(yīng)P型區(qū)邊界的原子由于得到電子而顯負電,于是就在邊界形成一個空間電荷區(qū)。為什么叫“空間電荷區(qū)”?是因為這些電荷是微觀空間內(nèi)無法移動的原子構(gòu)成的。
空間電荷區(qū)形成一個內(nèi)建電場,電場方向由N到P,這個電場阻止了后面的電子繼續(xù)過來填補空穴,因為這時P型區(qū)的負空間電荷是排斥電子的。電子和空穴的結(jié)合會越來越慢,最后達到平衡,相當(dāng)于載流子耗盡了,所以空間電荷區(qū)也叫耗盡層。這時PN結(jié)整體還呈電中性,因為空間電荷有正有負互相抵消。如圖2所示。
圖2. PN結(jié)形成內(nèi)建電場
外加正向電壓,電場方向由正到負,與內(nèi)建電場相反,削弱了內(nèi)建電場,所以二極管容易導(dǎo)通。綠色箭頭表示電子流動方向,與電流定義的方向相反。如圖3所示。
圖3. 正向?qū)顟B(tài)
外加反向電壓,電場方向與內(nèi)建電場相同,增強了內(nèi)建電場,所以二極管不容易導(dǎo)通。如圖4所示。當(dāng)然,不導(dǎo)通也不是絕對的,一般會有很小的漏電流。隨著反向電壓如果繼續(xù)增大,可能造成二極管擊穿而急劇漏電。
圖4. 反向不導(dǎo)通狀態(tài)
圖5是二極管的電流電壓曲線供參考。
圖5.二極管電流電壓曲線
圖6形象的展示了不同方向二極管為什么能導(dǎo)通和不能導(dǎo)通,方便理解。
圖6. 不同方向?qū)ㄐЧ煌?/span>
生活中單向?qū)ǖ睦右膊簧?,比如地鐵進站口的單向閘機,也相當(dāng)于二極管的效果:正向?qū)?,反向不?dǎo)通,如果硬要反向通過,可能就會因為太大力“反向擊穿”破壞閘機了。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。