你的位置:首頁 > 電路保護 > 正文

技術精華分享:PCB布線中模擬和數字布線的異同

發(fā)布時間:2014-04-28 責任編輯:xiangpeng

【導讀】對于電子工程師來說,電子設計中一個必不可少的環(huán)節(jié)就是PCB設計,而PCB的布線設計又有很多的講究,一個完善的PCB布線設計,是要考慮很多因素的,并且也有模、數之分,下面就把這模、數怎么個個不同分享給大家。

工程領域中的數字設計人員和數字電路板設計專家在不斷增加,這反映了行業(yè)的發(fā)展趨勢。盡管對數字設計的重視帶來了電子產品的重大發(fā)展,但仍然存在,而且還會一直存在一部分與模擬或現(xiàn)實環(huán)境接口的電路設計。模擬和數字領域的布線策略有一些類似之處,但要獲得更好的結果時,由于其布線策略不同,簡單電路布線設計就不再是最優(yōu)方案了。本文就旁路電容、電源、地線設計、電壓誤差和由PCB布線引起的電磁干擾(EMI)等幾個方面,討論模擬和數字布線的基本相似之處及差別。

1 模擬和數字布線策略的相似之處

1.1 旁路或去耦電容

在布線時,模擬器件和數字器件都需要這些類型的電容,都需要靠近其電源引腳連接一個電容,此電容值通常為0.1mF。系統(tǒng)供電電源側需要另一類電容,通常此電容值大約為10mF。

這些電容的位置如圖1所示。電容取值范圍為推薦值的1/10至10倍之間。但引腳須較短,且要盡量靠近器件(對于0.1mF電容)或供電電源(對于10mF電容)。

在電路板上加旁路或去耦電容,以及這些電容在板上的位置,對于數字和模擬設計來說都屬于常識。但有趣的是,其原因卻有所不同。在模擬布線設計中,旁路電容通常用于旁路電源上的高頻信號,如果不加旁路電容,這些高頻信號可能通過電源引腳進入敏感的模擬芯片。一般來說,這些高頻信號的頻率超出模擬器件抑制高頻信號的能力。如果在模擬電路中不使用旁路電容的話,就可能在信號路徑上引入噪聲,更嚴重的情況甚至會引起振動。

 技術精華分享:PCB布線中模擬和數字布線的異同

在模擬和數字PCB設計中,旁路或去耦電容(1mF)應盡量靠近器件放置。供電電源去耦電容(10mF)應放置在電路板的電源線入口處。所有情況下,這些電容的引腳都應較短

技術精華分享:PCB布線中模擬和數字布線的異同

在此電路板上,使用不同的路線來布電源線和地線,由于這種不恰當的配合,電路板的電子元器件和線路受電磁干擾的可能性比較大

技術精華分享:PCB布線中模擬和數字布線的異同

在此單面板中,到電路板上器件的電源線和地線彼此靠近。此電路板中電源線和地線的配合比圖2中恰當。電路板中電子元器件和線路受電磁干擾(EMI)的可能性降低了679/12.8倍或約54倍

對于控制器和處理器這樣的數字器件,同樣需要去耦電容,但原因不同。這些電容的一個功能是用作“微型”電荷庫。在數字電路中,執(zhí)行門狀態(tài)的切換通常需要很大的電流。由于開關時芯片上產生開關瞬態(tài)電流并流經電路板,有額外的“備用”電荷是有利的。如果執(zhí)行開關動作時沒有足夠的電荷,會造成電源電壓發(fā)生很大變化。電壓變化太大,會導致數字信號電平進入不確定狀態(tài),并很可能引起數字器件中的狀態(tài)機錯誤運行。流經電路板走線的開關電流將引起電壓發(fā)生變化,電路板走線存在寄生電感,可采用如下公式計算電壓的變化:V = LdI/dt

其中,V = 電壓的變化;L = 電路板走線感抗;dI = 流經走線的電流變化;dt =電流變化的時間。

因此,基于多種原因,在供電電源處或有源器件的電源引腳處施加旁路(或去耦)電容是較好的做法。

1.2 電源線和地線要布在一起

電源線和地線的位置良好配合,可以降低電磁干擾的可能性。如果電源線和地線配合不當,會設計出系統(tǒng)環(huán)路,并很可能會產生噪聲。電源線和地線配合不當的PCB設計示例如圖2所示。

此電路板上,設計出的環(huán)路面積為697cm2。采用圖3所示的方法,電路板上或電路板外的輻射噪聲在環(huán)路中感應電壓的可能性可大為降低.

[page]
2 模擬和數字領域布線策略的不同之處

2.1 地平面是個難題

電路板布線的基本知識既適用于模擬電路,也適用于數字電路。一個基本的經驗準則是使用不間斷的地平面,這一常識降低了數字電路中的dI/dt(電流隨時間的變化)效應,這一效應會改變地的電勢并會使噪聲進入模擬電路。數字和模擬電路的布線技巧基本相同,但有一點除外。對于模擬電路,還有另外一點需要注意,就是要將數字信號線和地平面中的回路盡量遠離模擬電路。這一點可以通過如下做法來實現(xiàn):將模擬地平面單獨連接到系統(tǒng)地連接端,或者將模擬電路放置在電路板的最遠端,也就是線路的末端。這樣做是為了保持信號路徑所受到的外部干擾最小。對于數字電路就不需要這樣做,數字電路可容忍地平面上的大量噪聲,而不會出現(xiàn)問題。

技術精華分享:PCB布線中模擬和數字布線的異同

(左)將數字開關動作和模擬電路隔離,將電路的數字和模擬部分分開。 (右) 要盡可能將高頻和低頻分開,高頻元件要靠近電路板的接插件

技術精華分享:PCB布線中模擬和數字布線的異同

在PCB上布兩條靠近的走線,很容易形成寄生電容。由于這種電容的存在,在一條走線上的快速電壓變化,可在另一條走線上產生電流信號。
 

技術精華分享:PCB布線中模擬和數字布線的異同

如果不注意走線的放置,PCB中的走線可能產生線路感抗和互感。這種寄生電感對于包含數字開關電路的電路運行是非常有害的。

2.2 元件的位置

如上所述,在每個PCB設計中,電路的噪聲部分和“安靜”部分(非噪聲部分)要分隔開。一般來說,數字電路“富含”噪聲,而且對噪聲不敏感(因為數字電路有較大的電壓噪聲容限);相反,模擬電路的電壓噪聲容限就小得多。兩者之中,模擬電路對開關噪聲最為敏感。在混合信號系統(tǒng)的布線中,這兩種電路要分隔開,如圖4所示。

2.3 PCB設計產生的寄生元件

PCB設計中很容易形成可能產生問題的兩種基本寄生元件:寄生電容和寄生電感。設計電路板時,放置兩條彼此靠近的走線就會產生寄生電容??梢赃@樣做:在不同的兩層,將一條走線放置在另一條走線的上方;或者在同一層,將一條走線放置在另一條走線的旁邊,如圖5所示。在這兩種走線配置中,一條走線上電壓隨時間的變化(dV/dt)可能在另一條走線上產生電流。如果另一條走線是高阻抗的,電場產生的電流將轉化為電壓。

快速電壓瞬變最常發(fā)生在模擬信號設計的數字側。如果發(fā)生快速電壓瞬變的走線靠近高阻抗模擬走線,這種誤差將嚴重影響模擬電路的精度。在這種環(huán)境中,模擬電路有兩個不利的方面:其噪聲容限比數字電路低得多;高阻抗走線比較常見。

采用下述兩種技術之一可以減少這種現(xiàn)象。最常用的技術是根據電容的方程,改變走線之間的尺寸。要改變的最有效尺寸是兩條走線之間的距離。應該注意,變量 d在電容方程的分母中,d增加,容抗會降低??筛淖兊牧硪粋€變量是兩條走線的長度。在這種情況下,長度L降低,兩條走線之間的容抗也會降低。

另一種技術是在這兩條走線之間布地線。地線是低阻抗的,而且添加這樣的另外一條走線將削弱產生干擾的電場,如圖5所示。

電路板中寄生電感產生的原理與寄生電容形成的原理類似。也是布兩條走線,在不同的兩層,將一條走線放置在另一條走線的上方;或者在同一層,將一條走線放置在另一條的旁邊,如圖6所示。在這兩種走線配置中,一條走線上電流隨時間的變化(dI/dt),由于這條走線的感抗,會在同一條走線上產生電壓;并由于互感的存在,會在另一條走線上產生成比例的電流。如果在第一條走線上的電壓變化足夠大,干擾可能會降低數字電路的電壓容限而產生誤差。并不只是在數字電路中才會發(fā)生這種現(xiàn)象,但這種現(xiàn)象在數字電路中比較常見,因為數字電路中存在較大的瞬時開關電流。

為消除電磁干擾源的潛在噪聲,最好將“安靜”的模擬線路和噪聲I/O端口分開。要設法實現(xiàn)低阻抗的電源和地網絡,應盡量減小數字電路導線的感抗,盡量降低模擬電路的電容耦合。


【相關閱讀】

電子工程師入門:PCB布線的不傳之秘
http://m.1151434.com/cp-art/80022584

單片機電路設計必看:讓電磁干擾“無處遁形”
http://m.1151434.com/emc-art/80022595

電子基礎入門必看:電子元器件詳解
http://m.1151434.com/cp-art/80022599

要采購開關么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉