電池管理系統(tǒng)提高了電動(dòng)汽車和混合動(dòng)力汽車的安全性
發(fā)布時(shí)間:2020-11-11 責(zé)任編輯:wenwei
【導(dǎo)讀】電動(dòng)汽車(EV)和混合動(dòng)力電動(dòng)汽車(HEV)的市場(chǎng)份額在2020年可能達(dá)到30%。這種市場(chǎng)吸引力是由于對(duì)內(nèi)燃機(jī)(ICE)汽車環(huán)境影響的擔(dān)憂增加以及降低燃料成本的努力。因此,汽車制造商正在投資于其車輛的電氣化,從而在電池技術(shù)和電池組安全性方面取得了重大進(jìn)步。
本文闡述了電池監(jiān)測(cè)集成電路如何提高電動(dòng)汽車和混合動(dòng)力汽車的安全性。
電動(dòng)汽車/混合動(dòng)力汽車的電池管理系統(tǒng)
電池驅(qū)動(dòng)的汽車用不使用汽油作為能源的電動(dòng)機(jī)取代了傳統(tǒng)的內(nèi)燃機(jī)。相反,電池儲(chǔ)存電能供電動(dòng)機(jī)使用。電動(dòng)汽車由許多部件組成,包括:
車載充電器,直接從電網(wǎng)給電池充電;
一個(gè)DC/DC轉(zhuǎn)換器,它將功率轉(zhuǎn)換為較低的電壓,從而為汽車電子設(shè)備(如加熱器和自動(dòng)車窗)提供動(dòng)力;
電源逆變器,將電池的能量傳輸?shù)诫妱?dòng)機(jī);
監(jiān)測(cè)電池組電壓、電流和溫度的電池監(jiān)測(cè)器和電流傳感器;
以及一個(gè)主微控制器(MCU),充當(dāng)“大腦”并協(xié)調(diào)電動(dòng)汽車內(nèi)的所有動(dòng)作。
圖1展示了電動(dòng)汽車電池管理系統(tǒng)(BMS)的高層架構(gòu)。
圖1電池管理系統(tǒng)有助于監(jiān)測(cè)和控制電動(dòng)汽車/電動(dòng)汽車的高壓電池組。
在典型的應(yīng)用中,電池監(jiān)視器堆疊成菊花鏈,如圖2所示。每個(gè)設(shè)備通過感應(yīng)線與電池芯相連,以監(jiān)控電池組中的每一個(gè)電池。堆棧中的每個(gè)監(jiān)視器都通過通信線路將信息從堆棧頂部傳輸?shù)降撞吭O(shè)備。為了方便主機(jī)MCU和堆棧設(shè)備之間的通信,需要橋接設(shè)備。
圖2電池監(jiān)視器堆疊成菊花鏈配置。
使用電池監(jiān)控器提高安全性
熱失控是HEV/EV系統(tǒng)安全問題的主要原因,因?yàn)樗鼤?huì)導(dǎo)致不可阻擋的連鎖反應(yīng)。當(dāng)溫度迅速上升到400℃時(shí),儲(chǔ)存在電池中的能量會(huì)突然釋放出來。這會(huì)導(dǎo)致電池變成氣態(tài),并可能引發(fā)火災(zāi)。
熱失控可由以下幾個(gè)因素引起:
如果電池在事故后受到物理損壞或有物體穿透電池組,則電池內(nèi)部短路。
一種外部短路,可以釋放無限量的能量,從而使電池迅速升溫。
電池過充電超過其最大允許電壓。
高充放電電流。
為了防止這些事件的發(fā)生,監(jiān)測(cè)電池是至關(guān)重要的。電池監(jiān)控器的設(shè)計(jì)旨在解決所有這些問題,并幫助電動(dòng)汽車和混合動(dòng)力汽車更安全。
電壓監(jiān)測(cè)
不準(zhǔn)確報(bào)告的電壓可能導(dǎo)致MCU對(duì)電池過度充電,可能損壞電池或?qū)е聼崾Э?。此外,測(cè)量冗余對(duì)于提高安全性和防止故障或隨時(shí)間推移而漂移至關(guān)重要。兩個(gè)完全獨(dú)立的模擬-數(shù)字轉(zhuǎn)換器(ADC)和兩個(gè)獨(dú)立的路徑可以幫助實(shí)現(xiàn)汽車安全完整性等級(jí)D(ASIL-D)符合ISO 26262標(biāo)準(zhǔn)。
冗余設(shè)計(jì)用于檢測(cè)其中一個(gè)ADC中的任何故障,并用于從獨(dú)立ADC對(duì)測(cè)量精度進(jìn)行雙重檢查。在安全診斷過程中,如果測(cè)量出現(xiàn)故障或偏移,將使用具有完全獨(dú)立路徑和基準(zhǔn)的輔助ADC,對(duì)同一個(gè)單元的測(cè)量值進(jìn)行雙重檢查和測(cè)量。
以Texas Instruments公司的BQ79606A-Q1汽車精密電池監(jiān)控器、平衡器和集成保護(hù)器為例:每個(gè)通道有六個(gè)專用的delta-sigma ADC和一個(gè)用于冗余的輔助ADC。該器件有一組窗口比較器,它獨(dú)立于主采集路徑為所有六個(gè)通道提供單元電壓監(jiān)測(cè),并與主ADC路徑并行工作。此比較器功能與ADC功能完全獨(dú)立;因此,即使ADC功能失效,模擬比較器仍會(huì)標(biāo)記欠壓和過壓比較器閾值的交叉。
電池溫度監(jiān)測(cè)
鋰離子電池不能承受極端溫度。電池組的典型容許溫度在0°C到60°C之間。除了外部因素外,一些開關(guān)元件消耗功率并釋放部分功率作為熱量,從而導(dǎo)致電池外殼的熱增加。監(jiān)測(cè)和控制電池組溫度對(duì)于維護(hù)電池組的健康和安全以及防止熱失控至關(guān)重要。
今天的電池監(jiān)視器有幾個(gè)通用的輸入/輸出(gpio)用于溫度傳感。BQ79606A-Q1精密電池監(jiān)測(cè)器可在六通道電池組中測(cè)量多達(dá)六個(gè)恒溫器,精度高,提供大量冗余,以防止溫度監(jiān)測(cè)故障。該設(shè)備使用一個(gè)集成的窗口比較器來監(jiān)控GPIO的輸入,以確定電池的溫度過高和過低。
啟用時(shí),比較器循環(huán)通過每個(gè)溫度感應(yīng)輸入,并將電壓與編程的閾值進(jìn)行比較。該比較器功能與ADC功能完全獨(dú)立;即使ADC功能失效,模擬比較器也會(huì)標(biāo)記出溫度過低和過高的比較器閾值的交叉點(diǎn)。主機(jī)MCU將立即通過故障線路通知MCU,以觸發(fā)冷卻系統(tǒng),并在達(dá)到不可忍受的溫度之前采取預(yù)防措施。
通信魯棒性和速度
如前所述,電池監(jiān)視器可堆疊成菊花鏈配置。每個(gè)設(shè)備將其信息通過下游的另一個(gè)設(shè)備傳遞到主機(jī)。堆棧中的設(shè)備和主機(jī)MCU之間的通信線路必須是穩(wěn)定的,以確保在短短幾毫秒內(nèi)進(jìn)行快速和完整的診斷。MCU應(yīng)該與堆棧中的任何設(shè)備進(jìn)行可靠通信,以讀取、配置和執(zhí)行診斷。
然而,電動(dòng)汽車的噪音環(huán)境對(duì)電池監(jiān)控器提出了真正的挑戰(zhàn)。為了解決這個(gè)問題,TI的電池監(jiān)視器使用了兩個(gè)引腳COM*P和COM*N的差分信號(hào)。如圖3所示,BQ79606A-Q1電池管理芯片的COM*P和COM*N引腳在不同的噪聲環(huán)境中被監(jiān)控。
圖3這是菊花鏈通信性能在噪聲存在下的外觀。
在所有頻率下,信號(hào)完整性保持不變,差分噪聲消除。驅(qū)動(dòng)器可承受高達(dá)±20V的噪聲振幅。此外,內(nèi)置于通信信號(hào)中的診斷機(jī)制有助于確保如果由于某種原因信號(hào)被破壞,設(shè)備將檢測(cè)到通信故障。這種體系結(jié)構(gòu)確保了與主機(jī)的可靠和快速通信。
鋰離子電池對(duì)過度充電、極端溫度和物理損傷非常敏感。任何一種情況都可能導(dǎo)致電池的熱失控。為了防止電池過充電,電池監(jiān)測(cè)儀已經(jīng)發(fā)展成高度安全和精確地監(jiān)測(cè)電池電壓。通過多重冗余對(duì)組件進(jìn)行溫度監(jiān)控,以確保組件溫度在可接受的范圍內(nèi)。堆棧監(jiān)視器之間的通信設(shè)計(jì)為能夠承受噪聲環(huán)境,并確保信息安全地傳輸?shù)街鱉CU。
推薦閱讀:
特別推薦
- 克服碳化硅制造挑戰(zhàn),助力未來電力電子應(yīng)用
- 了解交流電壓的產(chǎn)生
- 單結(jié)晶體管符號(hào)和結(jié)構(gòu)
- 英飛凌推出用于汽車應(yīng)用識(shí)別和認(rèn)證的新型指紋傳感器IC
- Vishay推出負(fù)載電壓達(dá)100 V的業(yè)內(nèi)先進(jìn)的1 Form A固態(tài)繼電器
- 康佳特推出搭載AMD 銳龍嵌入式 8000系列的COM Express緊湊型模塊
- 村田推出3225尺寸車載PoC電感器LQW32FT_8H系列
技術(shù)文章更多>>
- 高性能碳化硅隔離柵極驅(qū)動(dòng)器如何選型,一文告訴您
- 貿(mào)澤電子新品推薦:2024年第三季度推出將近7000個(gè)新物料
- 大聯(lián)大世平集團(tuán)的駕駛員監(jiān)控系統(tǒng)(DMS)方案榮獲第六屆“金輯獎(jiǎng)之最佳技術(shù)實(shí)踐應(yīng)用”獎(jiǎng)
- X-CUBE-STL:支持更多STM32, 揭開功能安全的神秘面紗
- 觸摸式OLED顯示屏有望重新定義汽車用戶界面
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索