【導(dǎo)讀】基準(zhǔn)電壓源是精密的模擬集成電路,您無(wú)法(或者說(shuō)很難)從基準(zhǔn)電壓源獲取電流。如果您需要精密電壓和少量電流,則需要一個(gè)帶有外部元件的外部 LDO 以及 PCB 空間。
Refulator™ 提供了一種解決方案,這是一種能夠驅(qū)動(dòng)電流的高精度基準(zhǔn)電壓源。今天就由 ADI 的資深設(shè)計(jì)工程師 Michael Anderson(他擁有16項(xiàng)專(zhuān)利)為大家介紹采用 Refulator 的優(yōu)點(diǎn)吧~
LT6658——基準(zhǔn)電壓源質(zhì)量的低漂移穩(wěn)壓器
LT6658是一款精密低噪聲、低漂移穩(wěn)壓器,具有專(zhuān)用基準(zhǔn)電壓源的精度規(guī)格和線性穩(wěn)壓器的功率能力——二者的優(yōu)點(diǎn)結(jié)合為ADI 的 Refulator技術(shù)。LT6658的漂移為10 ppm /°C,初始精度為0.05%,兩路輸出分別支持150 mA和50 mA,每路輸出均有20 mA的有源吸電流能力。為了保持高精度,負(fù)載調(diào)整率為0.1 ppm/mA。當(dāng)輸入電壓源引腳連接在一起時(shí),電壓調(diào)整率典型值為1.4 ppm/V,而當(dāng)為輸入引腳提供獨(dú)立電源時(shí),電壓調(diào)整率小于0.1 ppm/V。
為了更好地理解LT6658的特性以及它如何達(dá)到如此高的性能水平,圖1顯示了一個(gè)典型應(yīng)用。LT6658由一個(gè)基準(zhǔn)電壓級(jí)、一個(gè)降噪級(jí)和兩個(gè)輸出緩沖器組成。基準(zhǔn)電壓和兩個(gè)輸出緩沖器分開(kāi)供電,以實(shí)現(xiàn)優(yōu)異的隔離。每個(gè)輸出緩沖器都有一個(gè)開(kāi)爾文檢測(cè)反饋引腳,以提供最佳負(fù)載調(diào)整。
圖1. 典型應(yīng)用
降噪級(jí)由一個(gè)400 Ω電阻和一個(gè)用于連接外部電容的引腳組成。該RC網(wǎng)絡(luò)充當(dāng)?shù)屯V波器,用來(lái)限制基準(zhǔn)電壓級(jí)的噪聲帶寬。外部電容可以任意大,以便將噪聲帶寬降至非常低的頻率。
快速安靜的負(fù)載階躍響應(yīng)
作為穩(wěn)壓器,LT6658從VOUT1_F引腳提供150 mA電流,并具有出色的瞬態(tài)響應(yīng)性能。圖2a顯示了器件對(duì)1 mA負(fù)載階躍瞬態(tài)(從10 mA到11 mA)的響應(yīng);圖2b顯示了器件對(duì)140 mA負(fù)載階躍瞬態(tài)(從10 mA到150 mA)的響應(yīng)。輸出緩沖器的出電流和吸電流能力支持輸出快速建立。瞬態(tài)響應(yīng)時(shí)間很短,同時(shí)保持出色的負(fù)載調(diào)整。負(fù)載調(diào)整率典型值為0.1 ppm/mA。第二路輸出VOUT2_F具有類(lèi)似的響應(yīng)性能,最大負(fù)載為50 mA。
圖2a. 1 mA負(fù)載階躍響應(yīng)
圖2b. 140 mA負(fù)載階躍響應(yīng)
輸出跟蹤
對(duì)于使用不同基準(zhǔn)電壓的多轉(zhuǎn)換器應(yīng)用,即使輸出設(shè)置為不同的電壓,LT6658的輸出也會(huì)跟蹤,確保轉(zhuǎn)換結(jié)果一致。這之所以可能,是因?yàn)長(zhǎng)T6658的兩路輸出由一個(gè)公共電壓源驅(qū)動(dòng)。輸出緩沖器經(jīng)調(diào)整,實(shí)現(xiàn)出色的跟蹤和低漂移。當(dāng)VOUT1_F上的負(fù)載從0 mA增加到150 mA時(shí),VOUT2輸出變化小于12 ppm,如圖3所示。也就是說(shuō),即使負(fù)載和工作條件改變,輸出之間的關(guān)系也能得到很好地保持。
圖3. 通道間的負(fù)載調(diào)整(已消除發(fā)熱影響)
電源抑制和隔離
無(wú)論是用戶(hù)通過(guò)拍照上傳的內(nèi)容、自定義頭像,還是文章評(píng)論的圖片,圖片智能鑒黃接口都能夠進(jìn)行主動(dòng)識(shí)別及獲取色情量化程度信息,實(shí)現(xiàn)精準(zhǔn)快速的色情傾向判斷。
為了幫助實(shí)現(xiàn)出色的電源抑制和輸出隔離,LT6658提供三個(gè)電源引腳。VIN引腳為基準(zhǔn)電壓電路供電,而VIN1和VIN2分別為VOUT1和VOUT2供電。最簡(jiǎn)單的方法是將所有三個(gè)電源引腳連接在一起,提供1.4 ppm/V的典型直流電源抑制能力。當(dāng)電源引腳分別連接且VIN1電源切換時(shí),VOUT2的直流電壓調(diào)整率為0.06 ppm/V。
表1總結(jié)了每個(gè)電源引腳從5 V變?yōu)?6 V時(shí)的電源抑制情況。VIN電源的靈敏度最高,引起的輸出典型變化為1.4 ppm/V。電源引腳VIN1和VIN2幾乎無(wú)影響。VIN1和VIN2欄中的測(cè)量結(jié)果是輸出噪聲電平。
表4所示為交流PSRR的兩個(gè)例子。第一個(gè)例子在NR引腳上有一個(gè)1 μF電容,第二個(gè)例子在NR引腳上有一個(gè)10 μF電容。較大的10 μF電容將107 dB抑制能力擴(kuò)展到2 kHz。
圖4. 電源紋波抑制
圖5顯示了從VIN1到VOUT2的交流通道間電源隔離。當(dāng)CNR = 10 μF時(shí),100 kHz以上頻率的通道間電源隔離大于70 dB。
圖5. 通道間VOUT1至VOUT2隔離
負(fù)載瞬變對(duì)相鄰輸出的影響極小。圖6a和圖6b顯示了通道間輸出隔離。在一路輸出以50 mV rms擺動(dòng)的同時(shí),繪制另一路輸出的變化。
圖6a. 通道間VOUT1至VOUT2負(fù)載調(diào)整率
圖6b. 通道間VOUT2至VOUT1負(fù)載調(diào)整率
使用圖7所示電路可以實(shí)現(xiàn)非凡的交流PSRR。VOUT1輸出引導(dǎo)電源VIN和VIN2,產(chǎn)生一個(gè)遞歸基準(zhǔn)電壓源。
圖7a. 遞歸基準(zhǔn)電壓源解決方案(VOUT1為VIN和VIN2供電)
圖7b. 遞歸基準(zhǔn)電壓源電路的交流PSSR
電源管理和保護(hù)
三個(gè)電源引腳有助于管理封裝的功耗。當(dāng)提供大電流時(shí),應(yīng)降低電源電壓,以盡量減少LT6658的功耗。輸出器件上出現(xiàn)的電壓會(huì)較小,從而降低功耗并提高效率。
輸出禁用引腳OD用于關(guān)閉輸出緩沖器,并將VOUT_F引腳置于高阻態(tài)。這在發(fā)生故障時(shí)很有用。例如,負(fù)載可能會(huì)受損并短路。此事件可以被外部電路檢測(cè)到,兩路輸出均可禁用。此特性可以忽略,當(dāng)OD引腳懸空或接高電平時(shí),弱上拉電流將使能輸出緩沖器。
LT6658采用16引腳MSE裸露焊盤(pán)封裝,θJA低至35°C/W。當(dāng)電源電壓較高時(shí),功率效率較低,導(dǎo)致封裝過(guò)熱。例如,滿(mǎn)載時(shí)32.5 V電源電壓會(huì)在輸出器件上產(chǎn)生30 V × 0.2 A的多余功率。6 W的多余功率會(huì)將芯片內(nèi)部溫度提升到環(huán)境溫度之上210°C,非常危險(xiǎn)。為了保護(hù)器件,當(dāng)芯片溫度超過(guò)165°C時(shí),熱關(guān)斷電路會(huì)禁用輸出緩沖器。
噪聲
對(duì)于數(shù)據(jù)轉(zhuǎn)換器和其他精密應(yīng)用,噪聲是一個(gè)重要考慮因素。在NR(降噪)引腳上增加一個(gè)電容,可以使低噪聲LT6658的噪聲進(jìn)一步降低。NR引腳上的電容與片內(nèi)400 Ω電阻形成一個(gè)低通濾波器。大電容會(huì)降低濾波器頻率,從而降低總積分噪聲。圖8顯示了增大NR引腳上電容值的影響。使用10 μF電容時(shí),噪聲滾降至7 nV/√Hz左右。
圖8. 通過(guò)增大CNR降低噪聲
通過(guò)增大輸出電容,可以進(jìn)一步降低噪聲。當(dāng)NR和輸出電容均增大時(shí),輸出噪聲可降至幾微伏。輸出電容在1 μF到50 μF之間時(shí),LT6658可保持穩(wěn)定。如果并聯(lián)1 μF陶瓷電容,則輸出在大電容下也能保持穩(wěn)定。例如在圖9a所示電路中,1 μF陶瓷電容與100 μF聚合鋁電容并聯(lián)。
圖9a. 通過(guò)增大C1降低噪聲
這種配置在降低噪聲帶寬的同時(shí)仍能保持穩(wěn)定。圖9b顯示了不同輸出電容值對(duì)應(yīng)的噪聲響應(yīng)。在所有三種情況下,都有一個(gè)1 μF小陶瓷電容與較大電容并聯(lián)。
圖9b. 通過(guò)增大C1降低噪聲
這種方案的一個(gè)缺點(diǎn)是噪聲峰化,這可能會(huì)增加總積分噪聲。為降低噪聲峰化,可以插入一個(gè)1 Ω電阻與大輸出電容串聯(lián),如圖10a所示。輸出電壓噪聲和總積分噪聲分別如圖10b和10c所示。
圖10a. 通過(guò)增加一個(gè)1 Ω電阻與C2串聯(lián)來(lái)降低噪聲峰化
圖10b. 通過(guò)增加一個(gè)1 Ω電阻與C2串聯(lián)來(lái)降低噪聲峰化
圖10c. 通過(guò)增加一個(gè)1 Ω電阻與C2串聯(lián)來(lái)降低噪聲峰化
應(yīng)用
LT6658可為許多要求苛刻的應(yīng)用提供安靜精準(zhǔn)的電源。在混合信號(hào)領(lǐng)域,數(shù)據(jù)轉(zhuǎn)換器常常由微控制器或FPGA控制。圖11顯示了基本原理。傳感器向模擬處理電路和轉(zhuǎn)換器提供信號(hào),所有這些都需要干凈的電源。微控制器可能有多個(gè)電源輸入,包括模擬電源。
圖11. 混合信號(hào)應(yīng)用
作為一般規(guī)則,微控制器的高噪聲數(shù)字電源電壓應(yīng)與干凈精密的模擬電源和基準(zhǔn)電壓源隔離。LT6658的兩路輸出提供出色的通道間隔離、電源抑制和電源電流能力,確保為多個(gè)敏感模擬電路提供干凈電源。
LT6658也非常適合工業(yè)環(huán)境,因?yàn)樗梢圆捎酶咴肼暪╇娷壒ぷ?,并且一路輸出上的轉(zhuǎn)換造成的負(fù)載毛刺對(duì)相鄰輸出影響很小。此外,當(dāng)一路輸出上的負(fù)載需要電流時(shí),相鄰輸出會(huì)繼續(xù)跟蹤。
圖12顯示了一個(gè)實(shí)際例子,其中 LTC2379-18 高速ADC電路采用LT6658供電。VOUT2上的開(kāi)爾文檢測(cè)輸入配置為將2.5 V輸出提升至4.096 V基準(zhǔn)電壓,并為輸入放大器 LTC6362 提供共模電壓。VOUT1提升至5 V, 為需要5 V電源的LTC6362和其他模擬電路供電。LT6658兩路輸出分別在VOUT1和VOUT2上具有150 mA和50 mA的最大負(fù)載。
圖12. 數(shù)據(jù)采集解決方案
表2. 來(lái)自圖12的數(shù)據(jù)采集電路示例
圖13中的電路展示了LT6658如何為高噪聲數(shù)字電路供電,同時(shí)為精密ADC提供安靜精確的基準(zhǔn)電壓。在此應(yīng)用中,LT6658或單獨(dú)LDO的一個(gè)通道為高噪聲FPGA (VCCIO)和其他一些邏輯提供3.3 V電源,另一個(gè)通道為20位ADC的基準(zhǔn)輸入提供5 V電源。
圖13. 高噪聲數(shù)字測(cè)試示例電路
通過(guò)在LT6658和LDO之間切換數(shù)字供電電路,我們可以評(píng)估LT6658將一個(gè)通道上的數(shù)字噪聲與另一個(gè)驅(qū)動(dòng)20位ADC的安靜基準(zhǔn)輸入的通道相隔離的能力。在ADC輸入端使用一個(gè)干凈的直流電源,可以推斷出噪聲,如圖14所示。直方圖顯示LT6658或LDO為FPGA的VCCIO引腳供電的結(jié)果沒(méi)有明顯差異,證明LT6658具有穩(wěn)健的調(diào)節(jié)和隔離能力。
圖14. 圖13所示電路的測(cè)試結(jié)果直方圖
結(jié)語(yǔ)
LT6658是基準(zhǔn)電壓源和穩(wěn)壓器發(fā)展的下一步。對(duì)精密模擬電源而言,從單個(gè)封裝提供200 mA組合電流的精密性能和能力是一種范式轉(zhuǎn)變。噪聲抑制、通道間隔離、跟蹤和負(fù)載調(diào)整,使該產(chǎn)品成為精密模擬基準(zhǔn)電壓源和電源解決方案的理想之選。采用這種新方法,應(yīng)用不需要犧牲精度或功耗。
推薦閱讀: